18. Sequences
b5e. Indeterminate Forms \(0^0\) and \(1^\infty\) and \(\infty^0\)
Recall that \(e^x\) and \(\ln(x)\) are inverse functions. Further, recall that limits can be moved inside continuous functions.
Method:
- These sequences are all of the form: \((a_n)^{b_n}\). We apply \(e^{\ln{}}\) to each term, move the limit inside the exponential function (since it is continuous) and pull the exponent out of the log (using the identity \(\ln{a^b}=b\ln{a}\)). This will convert the limit to the indeterminate form \(0\cdot\infty\).
The first example has indeterminate form \(1^\infty\).
Compute \(\lim\limits_{n\to\infty} \left(1+\dfrac{2}{n}\right)^{3n}\).
We first apply \(e^{\ln{}}\) to the term: \[ \lim_{n\to\infty} \left(1+\dfrac{2}{n}\right)^{3n} =\lim_{n\to\infty} {\large e}^{\displaystyle \ln{\left(1+\dfrac{2}{n}\right)^{3n}}} \] Next we move the limit inside the exponential (since it is a continuous function) and pull the exponent out the log: \[ \lim_{n\to\infty} \left(1+\dfrac{2}{n}\right)^{3n} ={\large e}^{\displaystyle \lim_{n\to\infty} 3n\ln{\left(1+\dfrac{2}{n}\right)}} \] The new limit has the form \(0\cdot\infty\). We convert it to \(\dfrac{0}{0}\) by writing the \(n\) factor as \(\dfrac{1}{n}\) in the denominator. Then we apply l'Hopital's Rule and simplify: \[\begin{aligned} \lim_{n\to\infty} \left(1+\dfrac{2}{n}\right)^{3n} &={\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{3\ln{\left(1+\dfrac{2}{n}\right)}}{\dfrac{1}{n}}} \\ &\overset{\text{l'H}}{=}{\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{\dfrac{3}{1+\dfrac{2}{n}}\left(\dfrac{-2}{n^2}\right)}{-\dfrac{1}{n^2}}} \\ &={\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{6}{1+\dfrac{2}{n}}} \\[5pt] &={\large e^6} \end{aligned}\]
This exercise has indeterminate form \(\infty^0\).
Compute \(\lim\limits_{n\to\infty}n^{1/n}\)
Insert \(e^{\ln{}}\), move the limit inside the exponential and pull the exponent out the log.
\(\lim\limits_{n\to\infty}n^{1/n}=1\)
We insert \(e^{\ln{}}\), move the limit inside the exponential and pull the exponent out the log: \[\begin{aligned} \lim_{n\to\infty}n^{1/n} &=\lim_{n\to\infty}{\large e}^{\displaystyle \ln{n^{1/n}}} \\ &={\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{1}{n}\ln{n}} \end{aligned}\] Next we apply l'Hopital's Rule and simplify: \[\begin{aligned} \lim_{n\to\infty}n^{1/n}\, &\overset{\text{l'H}}{=}&{\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{\dfrac{1}{n}}{1}}={\large e}^0=1 \end{aligned}\]
This exercise has indeterminate form \(0^0\).
Compute \(\lim\limits_{n\to\infty} \left(\dfrac{1}{n^2}\right)^{\textstyle \dfrac{2}{\ln(n)}}\)
Insert \(e^{\ln{}}\), move the limit inside the exponential and pull the exponent out the log.
\(\lim\limits_{n\to\infty} \left(\dfrac{1}{n^2}\right)^{\textstyle \dfrac{2}{\ln(n)}}=e^{-4}\)
We insert \(e^{\ln{}}\), move the limit inside the exponential and pull the exponent out the log: \[\begin{aligned} \lim_{n\to\infty} \left(\dfrac{1}{n^2}\right)^{\textstyle \dfrac{2}{\ln(n)}} &=\lim_{n\to\infty} {\large e}^{\displaystyle \ln{\left(\dfrac{1}{n^2}\right)^{\textstyle \dfrac{2}{\ln(n)}}}} \\ &={\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{2}{\ln(n)}\ln\left(\dfrac{1}{n^2}\right)} \\ &={\large e}^{\displaystyle \lim_{n\to\infty} \dfrac{-4\ln(n)}{\ln(n)}} ={\large e}^{-4} \end{aligned}\] In the next to last step, we used \(\ln\left(\dfrac{1}{n^2}\right) =\ln\left(n^{-2}\right) =-2\ln n\).